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Abstract

In this paper, we present an approach to optimal image
scaling called Tree-Based Resolution synthesis (TBRS).
TBRS works by first performing a fast local classification of
a window around the pixel being interpolated, and then by
applying an interpolation filter designed for the selected
class.  The idea behind TBRS is to use a regression tree as a
piecewise linear approximation to the conditional mean
estimator of the high-resolution image given the low-
resolution image.  We generate the parameters for the
regression tree by training on sample images.  The training
is computationally demanding, but it only needs to be
performed once.  We will demonstrate that the resulting
predictor may be used effectively on input images that were
not used in the training.

1 Introduction

An image is usually only available at one or a few
resolutions, so that in order to render it at a higher
resolution, some image scaling technique must be applied.
This involves some inference on the part of the interpolation
algorithm; and for most images, the result is that the higher-
resolution image exhibits some objectionable artifact of the
interpolation process.  In answer to this, we present an
approach to optimal image scaling that we call Tree-Based
Resolution Synthesis (TBRS).

TBRS works by first performing a fast local
classification of a window around the pixel being
interpolated, and then applying an interpolation filter
designed for the selected class, as illustrated in Figure 1.  The
idea behind TBRS is to use a regression tree as a piecewise
linear approximation to the conditional mean estimator of
the high-resolution image given the low-resolution image.
Intuitively, having the different regions of linear operation
40
allows for separate filtering of distinct behaviors like edges
of different orientation and smoother gradient transitions.
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Figure 1.  TBRS interpolation by a factor of 2

An overview of the TBRS algorithm appears in Figure 2.
Note that before TBRS can be executed, we must already
have generated the parameters for the regression tree by
training on sample images.  This training procedure requires
considerable computation, but it only needs to be performed
once.  The resulting predictor may be used effectively on
images that were not used in the training.
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Figure 2.  Overview of the TBRS algorithm.

We will see that TBRS represents a departure from
traditional spline-based image interpolation techniques
[1,2,3] that usually rely on some assumption about the
continuous structure of an underlying interpolating function.
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It is also separate from [4], which is based on a different
underlying stochastic model.  However, it does share some
similarity with the wavelet-based approach described in [5],
as well as with edge-directed techniques such as [6] and [7],
since the purpose of the classification stage in TBRS is to
locate edge regions and to treat them specially to lead to a
scaled image having sharper appearance.

The remainder of this paper is organized as follows. In
Sec. 2, we describe the TBRS procedure; and in Sec. 3, we
develop the training procedure by which we obtain the
parameters for the regression tree. In Secs. 4 and 5, we
present results and conclusions.  Note that when we refer to
images, we mean monochrome images with pixel values in
the range [0,255].  To interpolate color images, we
interpolate the red, green, and blue planes separately.

2 TBRS Structure

In TBRS, we generate an LL ×  block of high-resolution
pixels for every pixel in the low-resolution source image as
illustrated in Figure 1.  (Here, 1≥L  denotes the scaling
factor.)  We do this by filtering the corresponding WW ×
window of pixels in the low-resolution image, with the filter
coefficients selected based on a classification.  (We will use

5=W , but generally W  may take the value of any positive
integer.)  Thinking of the desired high-resolution pixels as

an 2L -dimensional random vector X  and the corresponding

low-resolution pixels as the realization of a 2W -dimensional
random vector Z , our approach is to use a regression tree
which approximates the conditional mean estimator of

ZX | , so that the vector X̂  of interpolated pixels satisfies

[ ].|Eˆ ZXX ≈ (1)

It is well known that the conditional mean estimator
minimizes the expected mean-squared error [8]. (Note that
we will use capital letters to represent random quantities,
and lowercase letters for their realizations.)

A closed-form expression for the true conditional mean
estimator would be difficult to obtain for the present context.
However, the regression tree T  that we use provides a
convenient and flexible piecewise linear approximation,
with the M  different linear regions being polygonal subsets
which comprise a partition of the sample space = of low-

resolution vectors Z . These polygonal subsets, or classes,
correspond to visually distinct behaviors like edges of
different orientation.

With the main ideas in place, we return to Figure 1 for a
better look.  To interpolate the shaded pixel in the low-
resolution image, we first procure the vector z  by stacking
the pixels in the 55×  window centered there.  Then we
obtain interpolated pixels as
406
,ˆ jj zAx β+= (2)

where jA  and jβ  are respectively the 22 WL ×  matrix and

2L -dimensional vector comprising the interpolation filter for
class j , and j  is the index of the class obtained as

,)(zCj T= (3)

where { }1,...,0: −→ MCT =  is a function which embodies the

classifying action of T .  To evaluate )(zCT , we begin at the

top and traverse down the tree T  as illustrated in Figure 3,
making a decision to go right or left at each nonterminal
node (circle), and taking the index j  of the terminal node
(square) which z  lands in.  Each decision has the form,

( ) ,0
<
>

− m
t
m ze µ (4)

where m  is the index of the node, me  and mµ  are 2W -

dimensional vectors, and a superscript t  denotes taking the
transpose. This decision determines whether z  is on one
side of a hyperplane or the other, with mµ  being a point in

the hyperplane and with me  specifying its orientation.  By

convention, we go left if the quantity on the left-hand side is
negative, and we go right otherwise.
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Figure 3.  Binary tree structure used in TBRS.

3 Generating Parameters for TBRS

Our objective during training is to obtain numerical
values for the integer number 1≥M  of terminal nodes in the

tree; the decision rules ( ){ } 2
0, −

=
M
mmme µ  for the nonterminal

nodes (assuming that 1>M ); and the interpolation filters

( ){ } 1
0, −

=
M
mmmA β  for the terminal nodes.  To compute these
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parameters, we use training vector pairs, which we assume
are independent realizations of ( )ZX , .  A training vector
pair is extracted from low- and high-resolution renderings of
the same image.

The training procedure, which is illustrated in Figure 4,
is based on that given by Gelfand, Ravishankar, and Delp, in
[9], suitably modified for the design of a regression tree
rather than a classification tree.  We first use one training set
G  to grow the tree, and then we use a different training set
P  to prune it back.  Finally, we generate new interpolation
filters for the terminal nodes using a very large training set
D . An important difference between our procedure and that
of Gelfand, Ravishankar, and Delp, is that our procedure
only involves one growing phase followed by one pruning
phase, rather than iterating through cycles of the growing-
then-pruning process.

In the remainder of this section, we describe the tree
growing phase in Sec. 3.1, the pruning phase in Sec. 3.2, and
the final filter generation process in Sec. 3.3.  Last, in Sec.
3.4, we describe how we generate the training images and
how we procure the training sets G , P , and D .

We will refer to a tree-structured interpolator with l
terminal nodes as ( )lT .  To evaluate the quality of ( )lT , we
compute its sample mean-squared interpolation error.
During the growing phase we compute the error from the set
G , and we use the notation ( )( )lTG( .  Note that this is a

resubstitution estimate, and should not be regarded as an
honest estimate of the true mean-squared error of ( )lT  [10].
However, we only use ()⋅G(  to compare trees generated

during the growing phase.  We similarly only use ()⋅P( ,

computed relative to the pruning set P , to compare trees
generated during the pruning phase.
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Figure 4.  Overview of the TBRS training process.
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3.1 Growing the tree-structured interpolator
During the tree growing phase, we generate an increasing
sequence of trees

( ) ( )  (  )max...,,2,1 MTTT  ,

where maxM  is a user-specified maximum number of

terminal nodes. We select maxM  to be large enough so that

( )maxMT  actually overfits the set G [9]. In our experiments,

we have obtained reasonable interpolation results by setting

maxM  to 500.  This tends to lead to final tree sizes (i.e., after

the pruning phase is complete) of between roughly 20 and
50 classes.

To generate ( )1+lT  from ( )lT   (for 1≥l ), we split the

terminal node with index *m  that yields the greatest
reduction in the sample mean-squared error.  More

specifically, we split terminal node *m  of ( )lT  selected as

( )( ),1minarg
0

* +′=
<≤

l
l

mG
m

Tm ( (5)

where ( )1+′ lmT  is the candidate tree with 1+l  terminal

nodes, generated by splitting node m  in ( )lT .  Note here
that we will use primes with variables associated with
candidate trees.

To generate the candidate tree ( )1+′ lmT  from ( )lT , we

do two things.  First, we use the subset of G  belonging to
class m , defined as

( )( ){ },:),( mzCGzxG Tm =∈= l (6)

to generate the candidate decision rule

( )11, −− ′′
ll µe

for the candidate nonterminal node in ( )1+′ lmT .  Note that

we use the subscript 1−l  since this will be the index of the
new nonterminal node in ( )1+lT .  Second, we use the
candidate decision rule to divide mG  into two sets mG′ and

lG′ , and we generate new interpolation filters

( )mmA β ′′ ~
,

~

and

( )ll β ′′ ~
,

~
A

for the two candidate terminal nodes in ( )1+′ lmT .  Here, we

use the indices m  and l  since they would be the indices of
the two new terminal nodes in ( )1+lT .  Note also that we
will use tildes to denote interpolation filters generated during
the growing stage of the training.
3.1.1. Splitting the m-th terminal node in ( )lT .

By generating the candidate decision rule we split the
polygonal subset of =  belonging to class m  defined as
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( )( ){ }.: mzCz Tm =∈= l== (7)

It is common for a split to have the form of a hyperplane in
= , but the form which we will use is actually quite general

since we make no restriction on the orientation of the
hyperplane.  Note that in this section, we restrict our
attention to the m -th terminal node of ( )lT .  To keep the
notation simple, we will be using X  and Z  to refer to the
random variables ( )mZX =∈|  and ( )mZZ =∈| .

We define the split based on a vector X , defined as

,
~

ZABX m= (8)

where B  is an 22 LL ×  matrix which subtracts the average of
the elements in the vector ZAm

~
 from each element in ZAm

~
.

That is, B  is computed as

,
1
2

O
L

IB −= (9)

where I  is an 22 LL ×  identity matrix and O  is 22 LL ×
matrix of ones.

To understand how we selected X , note that ZAm
~

 is

the part of X̂  that depends upon Z .  We think of X  as a

“centered” version of the part of X̂  that depends upon Z ,
since B  renders X  invariant to the average of the elements
in ZAm

~
.  By splitting on X , we are forcing the splits to

depend on the differences among the elements in X̂ , rather

than on the elements of X̂  themselves.  Geometrically, this
leads to more classes for structures based on differences,
such as edges of different orientation. This can significantly
improve interpolation quality.

The desired decision rule is obtained as

( )t
m

t
mX

ABee
~

ˆ
|1 =′ −l (10)

and

,ˆ |1 mZµµ =′−l (11)

where mXe |
ˆ  is the eigenvector corresponding to the largest

eigenvalue of an estimate mX |Σ̂  of the covariance matrix of

X , and mZ |µ̂  is an estimate of the mean of Z .  Observe that

this decision rule splits realizations of Z , and it also yields a
hyperplane which divides realizations of X , since

( ) ( ),ˆˆˆ
~

ˆ |||| mX
t

mXmZm
t

mX
XeZABe µµ −=− (12)

where mX |µ̂  is an estimate of the mean of X .  The idea

behind the form of this split is to divide the realizations of
X  with a hyperplane passing through the mean of X  and

perpendicular to the direction in which X  varies the most.
Using second-order statistics, a good way to estimate that
408
direction is to take the eigenvector mXe |  corresponding to

the largest eigenvalue of the covariance matrix of X  [11].
We compute mZ |µ̂  as the sample mean of the z ’s in

mG .  Next, we obtain mXe |
ˆ  by computing mX |Σ̂  and then

performing an eigenvalue decomposition.  We obtain mX |Σ̂

as

,
~ˆ~ˆ

||
tt

mmZmmX BAAB Σ=Σ (13)

where mZ |Σ̂  is an estimate of the covariance matrix of Z ,

computed as

( )( ) ,ˆˆ
1ˆ

1

0

||| ∑
−

=

−−=Σ
mGN

i

t
mZimZi

mG
mZ zz

N
µµ (14)

where 
mGN  is the number of training vector pairs in mG .

3.1.2. Generating interpolation filters for the
candidate terminal nodes.

With the candidate decision rule computed, we separate
the set mG  into two sets

( ) ( ){ }0:),( 11 <′−′∈=′ −− ll µzeGzxG t
mm (15)

and

( ) ( ){ }0:),( 11 ≥′−′∈=′ −− lll µzeGzxG t
m (16)

Note that we use the indices m  and l  since they would be
the indices of the new terminal nodes in )1( +lT .  The next
step is to compute candidate interpolation filters for the
candidate terminal nodes.  Since the procedures are the
same, we will only demonstrate for mG′ .

Our approach is to use maximum likelihood estimates
of the parameters for the regression of X  on ( )

P
=′∈ZZ | ,

where

( ) ( ){ }.0: 11 <′−′∈=′ −− ll µzez t
m==

P
(17)

This is a well-known result from the multivariate statistics
[12].  The desired interpolation filters are computed as

( ) 1
||

ˆˆ~ −
Σ′Σ′=′ mZmXZmA (18)

and

( ) ,ˆˆˆˆ
~

|
1

||| mZmZmXZmXm µµβ ′Σ′Σ′−′=′ −
(19)

where

,
1ˆ

1

0

| ∑
−′

=′
=′

mGN

i

i
mG

mZ z
N

µ (20)

,
1

ˆ

1

0

| ∑
−′

=′
=′

mGN

i

i
mG

mX x
N

µ (21)
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( )( ) ,ˆˆ
1ˆ

1

0

||| ∑
−′

=′
′−′−=Σ′

mGN

i

t
mZimZi

mG
mZ zz

N
µµ (22)

( )( ) .ˆˆ
1ˆ

1

0

||| ∑
−′

=′
′−′−=Σ′

mGN

i

t
mZimXi

mG
mXZ zx

N
µµ (23)

Here, 
mGN ′  is the numbers of elements in mG′ , and a

superscript “ 1− ” denotes taking the matrix inverse (
pseudo-inverse).
3.2 Pruning the tree-structured interpolator

The purpose of the pruning stage is to rem
extraneous branches in ( )maxMT , leaving behind a tre

structure which efficiently represents a wide range
behaviors observable in images.  Here we genera
decreasing sequence of pruned subtrees

( ) ( )*
max ,..., MTMT  ,

1*
max ≥≥ MM , where each tree is obtained from t

preceding tree by removing a branch.  We point out that

maxM  must be specified by the person programming 

algorithm, but *M  actually falls out of the algorithm b
itself.

We employ a procedure which is similar to that used
[13] and in [14].  The basic idea is to start at the term
nodes and to work our way up toward the root node, pru
any nonterminal node along the way which yields a decr
in the estimated mean-squared error ()⋅P( .  The only

requirement on the order is that we never consider prunin
any nonterminal node until after we have considered pru
at both its children.  Our approach is to submit the root n
of ( )maxMT  to a recursive subroutine that first consid

pruning at each child of the current nonterminal node (wi
subroutine call to itself), and then considers pruning at
current nonterminal node.

After the pruning is complete, we regard the size 
the shape of the final tree-structured interpolator T  as fixed.
That is,

,*MM = (24)

and the decision rules for the nonterminal nodes in T  are

defined to be those in ( )*MT  (assuming that 1* >M ).  The

interpolation filters are not defined to be those in ( )*MT ,
because we generate new ones after the pruning stage.
3.3 Generating new interpolation filters

The last step in the training procedure is to compute
interpolation filters in T  using a set D  of training vector
pairs which is very large relative to the sizes of the setsG

and P .  The idea here is to use many more vector pairs 
were used to generate the interpolation filters for the cla
originally, during the tree growing stage.  This improv
performance for interpolating behaviors which are dist
the
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enough to have warranted the formation of classes, 
which may have been slightly under-represented in the
growing set.  We have observed that this impro
performance in particular for higher-order interpolatio
such as for an interpolation factor 4=L .

This process is formally identical to the procedure 
which we generate the candidate interpolation filters, wh
we explained above.
3.4 Obtaining the training sets

We obtain the training vector pairs from a set of train
images which consists of low-resolution images a
corresponding high-resolution images.  To generate 
training images, we first procure a database of high-qua
images from a photo CD image library.  These are the in
images in Figure 4.  We create the low-resolution trainin
images using simple LL ×  block-averaging.  By sharpenin
the input training images to produce the high-resolut
training images, we give the resulting interpolator a built
sharpening effect.

Next we procure the training vector pairs whi
comprise the training sets G , P , and D .  One requiremen
is that in order for the pruning stage to be effective, the 
G  and P  should be extracted from different pixels in t
training images.  It is also important that the pixels be fr
spatially separate regions of the training images, so tha
set represents a wide variety of image data.

We selected the sizes of sets G  and P  to be equal and
as large as possible, under the constraint that during eith
the growing and pruning stages, all of the training set sh
be maintained in computer memory along with the res
the executable.  This speeds up the training proces
making it unnecessary for the computer to refer to the 
for a training vector pair each time it is needed.  In 
experiments, each of G  and P  contained 300,000 training
vector pairs.  On the other hand, the training set D  can be
arbitrarily large, since each training vector pair in D  only
has to be accessed once.  In our experiments, D  contained
between 5 and 20 million vector pairs.

4 Results

Here we present results of image scaling by a facto
2=L , rendered at 75 dots per inch. None of the image

this section was among the training images.
In Figure 5, we show an image after default Photosh

sharpening followed by bilinear interpolation.  (This was 
best result we obtained using the sharpening function
Photoshop.)  In Figure 6, we show the same image scal
using TBRS with the built-in sharpening effect described
Sec. 3.4. Note that the TBRS interpolation is sharper t
the bilinear result, and the edges in the TBRS result 
more continuous.  We have also included Figure 7, to follow
up on the part of Sec. 3.1 where we describe our metho
splitting terminal nodes.  Here we demonstrate the effec
centering the vector relative to which we determine 
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splits, using the matrix B .  Note that the result generated by
splitting on a vector which was not centered exhibits
objectionable “jaggie” artifacts around edges.  These
artifacts are not nearly so prominent in the standard TB
result.  An interesting fact is that although the same training
sets were used to generate the two sets of interpola
parameters, the interpolator parameters for standard TBR
had only 23 classes, while the parameters generated without
the centering had 40 classes.  This implies that the cente
makes the splitting process more efficient by encouragin
the formation of visually distinct classes such as edges of
different orientation, rather than wasting splits by definin
classes for behaviors which are visually more similar.

Figure 5.  Image processed by default sharpening in Photosho
followed by 2X bilinear interpolation.

Figure 6.  Image scaled 2X using TBRS.

Figure 7.  Result of not centering vector used to determine sp
410
r

ng

5 Conclusions

In this report, we have introduced TBRS, a method for
image scaling.  One advantage of TBRS is that it has a
simple implementation.  But we have also seen that since t
TBRS interpolator is designed to approximate the
conditional mean estimator of the high-resolution pixels
given corresponding low-resolution pixels, it provides an
approximately optimal (MMSE) interpolation.  We have
demonstrated the effectiveness of TBRS by showing results
of scaling images that were not among the training images
used to generate the predictor parameters.
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